Flood frequency and the rule of 3

There is a ‘rule of three‘ in statistics that provides a rapid method for working out the confidence interval for flood occurrence.

From Wikipedia:

If a certain event did not occur in a sample with n subjects, the interval from 0 to 3/n is a 95% confidence interval for the rate of occurrences in the population.

For example, if a levee hasn’t been overtopped since it was built 100 years ago, then it can be concluded with 95% confidence that overtopping will occur in fewer than 1 year in 33 (3/100).  Alternatively the 95% confidence interval for the Annual Exceedance Probability of the flood that would cause overtopping is between 0 and 3/100 (3%).  Of course you may be able to get a better estimate of the confidence interval if you have other data such as a flow record, information on water levels and the height of the levee.

The rule of 3 provides a reasonable estimate for n greater 30.

2 thoughts on “Flood frequency and the rule of 3

  1. Luke P

    Hi Tony,
    Is there any similarity in basis between this and the recommendation by Chow (1953) for the suggested limit of extrapolation for frequency analysis (three to four times the duration of the observed record) in that fact that ‘we know it didn’t go larger than this over this period’?
    Thanks

    Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s